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Abstract-Singular surfaces in a linear thermo-elastic dielectric material are considered, where the
constitutive equations of the elastic dielectric proposed by Toupin and the heat equations with finite wave
velocities are combined. There exist six types of singular surfaces including a stationary one. The
velocities, the coupled fields and the variation of the amplitudes of the surfaces with respect to time are
investigated. It is found that the amplitude of the mechanical transverse wave rotates during propagation
and at the stationary surface the amplitude of the electric field periodically reverses in direction and the one
of the polarization field rotates elliptically with the same period.

I. INTRODUCTION

Since Toupin[l] proposed the theory of elastic dielectric, several studies have been made for
the wave propagations in the materials. McCarthy [2] and McCarthy and Green [3] considered
the acceleration waves in a hyperelastic dielectric material. Tokuoka and Kobayashi[4] con­
sidered the harmonic waves in a linear isotropic dielectric material. Recently Saito and
Tokuoka[5], taking into account the relaxation of heat conduction, proposed the constitutive
equations of a linear thermo-elastic dielectric material and investigate the harmonic waves with
attenuation constants.

In this paper the singular surfaces in a slightly more general thermo-elastic dielectric
material are investigated, where the equation of molecular equilibrium contains the term of
gyration vector. Two remarkable phenomena can be observed even if the effect of heat
conduction is neglected, that is, the rotation of the amplitude of the mechanical transverse wave
occurs and a stationary surface of electric and polarization fields exists. These phenomena have
not been reported until now, because for the occurrence of them it is necessary to take into
consideration the singular surfaces and the generalized equation of molecular equilibrium.

In Section 2 the basic equations and the definition of the singular surface are given. In
Section 3 the existance of the six types of singular surfaces are shown: a mechanical transverse
wave, two thermo-mechanical longitudinal waves, a electro-magneto-polarization wave, a
electro-magnetic wave and a stationary surface of electric and polarization fields. The velo­
cities and the relations among the coupled fields of the singular surfaces are also discussed
here. In Section 4 the variation of the amplitudes of the singular surfaces with respect to time
are analyzed.

2. BASIC EQUATIONS AND DEFINITION OF SINGULAR SURFACE

We consider the following basic equations of a homogeneous isotropic linear thermo-elastic
dielectric material:

rot e +Ii =0, div b =0,

-.1 rot b- Eoe-p = 0, div (Eoe+p) = 0,
1J;0

e +(u x 80) __l_p +(1'80 x p) = 0,
EoX

po -(A +IJ;) grad div U -IJ;V2u -(px 8 0)+ aograd T = 0,

Tq +q +K grad T = 0,

aoTotr E+ {3oToT+ div q =0,
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(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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where
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ao == p(3A +2f.L )a,

f30 == pCv/To,

(2.7)

(2.8)

(2.9)

and we assume that the external forces and the heat supplies do not exist. In the above
equations the dependent variables of co-ordinates and time are the magnetic field b, the electric
field e, the polarization field p, the displacement u, the heat flux q and the temperature T, and
they denote the small derivations from an equilibrium static state with a constant magnetic
field. The known constants are the magnetic permeability of vacuum f.Lo, the dielectric constant
of vacuum Eo, the external magnetic field Bo, the coefficient of the gyration vector expressed in
terms of Bo "Y, the polarizability X' the density p, the elastic constants A and fL, the coefficient of
thermal expansion a, the relaxation time of heat conduction T, the specific heat at constant
volume Cv , the temperature of an equilibrium state To, and the heat conductivity K.

Henceforth we shall be concerned with the plane singular surfaces having the following
properties:

(i) All the dependent variables and the first derivatives of u are continuous everywhere.
(ii) The first derivatives of the dependent variables except u and the second derivatives of u

have finite jump discontinuities at the surfaces but they are continuous everywhere else.
Then the first and the second compatibility conditions for a continuous function f of

co-ordinates and time at a singular surface are

[f,,] = fn;, [j] = - uf,

[f,;il = !n;nj, [j,,] = if - U/)n;, [J] = u2! - 2ul,
(2.10)

(2.11)

where
f== [f,,]nj, (2.12)

Here a bracket denotes the jump of the quantity within it at the surface and U and n are,
respectively, the normal velocity and the unit normal vector, which is determined as in the
propagation direction in the case U i:- O. The quantity f is called the amplitude of f at the
surface. In the following sections, when we wish to distinguish between singular surfaces with
the velocities U i:- 0 and U =0, we use the terms of a wave and a stationary surface, respectively.

3. VELOCITIES AND COUPLED FIELDS OF SINGULAR SURFACES

Taking the jumps of eqns (2.1)-(2.6) by means of eqns (2.10) and (2.11) yields

ex n + Ub = 0, b. n = 0,

l-b'xn-EoUe-Up=O, e'n+p'n=O,
f.Lo

"yUBox P=: 0,

(pU 2
- f.L)v - (A + f.L)(v • n)n - aoUTn =: 0,

TUq-KTn =: 0,

aoTov· n - f3oToUT +q. n =: 0,

where

V== Ii.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

While taking the jumps of the co-ordinate derivatives of the inner product of eqn (2.3) by Bo

yields another equation:

e.B - _1_ P.Bo = O.
EoX

(3.8)
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If the singular surface is a wave, eqns (3.3) and (3.8) can be combined into the equivalent
equation:

E"ox(e' Bo)Bo- (Bo . Bo)i) =O.

Then the above jump equations are expressed as

(3.9)

(a, f3 = 1,2, ... , 16) (3.10)

where
a;;: (e, b, p, v, q, T),

-nx Ul 0 0 0 0
€0f.Lo U1 nx f.Lo U1 ° 0 0

11R..1311=11~ :11 E5

€oXBo@Bo 0 -(Bo' BoH 0 0 0

0 0 0
(pU z- f.L)1

0 -aoUn
-(A +f.L)n0n

0 0 0 0 'TVI -Kn
0 0 0 aoTon n -f3oToU

(3.11)

(3.12)

and nx denotes the 3 x 3 matrix which corresponds to the vector product by n. It is well known
that the determinant of the coefficients matrix of eqn (3.10) should vanish for any wave, or
equivalently

detA =0 or detB = 0 (3.13)

should holds. The velocity and the coupled fields of the wave are given, respectively, by U
satisfying eqn (3.13) and by the non-zero amplitudes satisfying eqn (3.10) for the velocity. Since
we may assume that in general eqns (3. 13)I.z do not hold simultaneously for a single value of U,
we have

Y,q =0, T=O or e= b= ii =0, (3.14)

respectively, for the values of U satisfying eqns (3. 13)I.z. Thus we can conclude that there exist
no couplings between the thermo-mechanical fields and the electro-magneto-polarization fields
for any wave.

The matrix B in eqn (3.13h is found to coincide with the one for the linear thermo-elastic
material considered by Tokuoka(6] except the definitions of the known constants, so that by
applying the obtained result the following three types of waves exist for eqn (3.13)z.

Mechanical transverse wave
If we suppose that

eqn (3.4) imposes

Yxn:f:.O, (3.15)

(3.16)

The velocity is equal to the one of the usual transverse wave. For this wave we obtain
from eqns (3.4)-(3.6)

Y- n= T=O,

Thenno-mechanical longitudinal waves
If we suppose that

q =0. (3.17)

yon, q-n, T:f:.O, (3.18)
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then we have from eqns (3.4)-(3.6)

where

(3.19)

2 A +2/-L
CL =:--,

p
(3.20)

For these waves eqns (3.4) and (3.5) impose

vx n = qx n = O. (3.21)

As was mentioned above, the amplitudes of the electro-magneto-polarization fields vanish at
these three waves, and therefore the velocities and the coupled fields of them coincide
completely with those of the linear thermo-elastic material. It will be however shown in the
next section that the variation of the mechanical transverse wave with respect to time differs
from that of the thermo-elastic material. We shall next consider the case of eqn (3.13)1.

Electro-magneto-polarization wave
Suppose that the amplitude of the polarization field does not vanish at a wave, then it should

be parallel to the external magnetic field from eqn (3.3). The following equations are derived
from eqns (3.1) and (3.2) for any singular surface:

(1- f"0/-LoU 2)b = /-LoUn x p,

f"o(l- f"op.,oU 2)e = EO!J.oU 2p- (p .o)n.

(3.22)

(3.23)

Eliminating efrom eqns (3.9) and (3.23), and taking the inner product of the result by 8 0 lead to
the equation:

(3.24)

Here and henceforth () denotes the angle between nand 80. Since the inner product of p and 8 0
does not vanish for the wave where p is parallel to 80, eqn (3.24) gives the velocity of the wave;

U
2 _ 1+X cos 2

() 2

- l+x c, (3.25)

where c == (Eop.,of I/2 denotes the velocity of light in vacuum. Figure 1 shows that the velocity is
always smaller than or equal to that of light and that the retardation increases as X increases or
as 0 draws to 7T/2.

The amplitude of the electric field lies on the plane spanned by nand p in view of eqn (3.23).
Let 4> be the angle between nand e measured in the same direction as 0, see Fig. 2. To
determine the angle 4>, we rewrite eqns (3.2h and (3.8) as

Eo cos 4> e± cos {}p = 0,

EoX cos (4) - (}) e+ i5 = o.

(3.26)

(3.27)

The assumption that p does not vanish for this wave imposes that the determinant of the
coefficients matrix of e and i5 must be zero. Hence we finally obtain

(
1+X cos

2 8)
4> = arctan . 8 8'X sm cos

(3.28)

Figure 3 shows that eis nearly perpendicular to n for small X and that it is nearly perpendicular
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Fig. I. Variation of the velocity of the electro-magneto-polarization wave.

Fig. 2. Coupled fields of the electro-magneto-polarization wave.

Fig. 3. Variation of the angle cb between e and n at the electro-magneto-polarization wave when the
directions of ji and Bo are the same. The values of cb in the parentheses correspond to the case where the

directions of ji and Bo are the opposite.

Fig. 4. Variation of the ratios among e, band p at the electro-magneto-polarization wave, where solid and
broken lines denote, respectively, cble and pifoe.

to Bo for large X and except for 8 near rr/2. It is also found that for large X the direction of eis
very sesitive to the small change of 8 near rr/2.

In the meanwhile the amplitude of the magnetic field is perpendicular to the plane spanned
by D and efrom eqn (3.1)1, see Fig. 2. Hence we can conclude that all the coupled fields of this
wave, when Bo is not parallel to n, are linearly polarized in the directions determined by D, 8
and X. The variation of the ratios among e, hand p with respect to X and 8 shown in Fig. 4 are
given by eqns (3.1), (3.25) and (3.26). The ratios hIe and pIe take their maximum values,
respectively, when Bo is parallel and perpendicular to n. When Bo is parallel to n, p vanishes and
the ratio hIe coincides with that of the usual electro-magnetic wave. In view of Fig. 1, the
velocity is also found to coincide with that of the electro-magnetic wave in this case. Hence we
can state that the electro-magneto-polarization wave reduces to the electro-magnetic wave
when Bo is parallel to D.

Electro-magnetic wave
If Bo is not parallel to D and if a wave has a different velocity from the ones obtained up to
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now, the above discussion imposes that
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for this wave. Supposing that

yields

v, q, p == 0,

e, bt- 0

T=O (3.29)

(3.30)

(3.31)

from eqns (3.22) and (3.23). Thus this wave is a electro-magnetic wave with the velocity of
light. From eqns (3.2h, (3.8) and (3.29), we have

e.n == 0, e' 80 = 0, (3.32)

which implies that e is linearly polarized in the directions of ±n x 8 0 • While b is also linearly
polarized in the directions of ±n x (n x 80), see Fig. 5.

r--------
/

/
/

I

Fig. 5. Coupled fields of the electro-magnetic wave.

When 8 0 is parallel to n, we have already proved that the electro-magnetic wave with the
velocity given by eqn (3.31) can exist. Then emay point in any direction being perpendicular to
n, and eqn (3.1) implies that b is perpendicular to nand e.

Stationary surface of electric and polarization fields
Up to now we have presented all the waves which can exist, and so if another singular

surface may exist, it must be a stationary one. To investigate it, let us put U == 0 in the basic
jump eqns (3.1)-(3.6) and (3.8), which are valid for any singular surface. Then the coefficients
matrix for V, q and t is again given by 8 in eqn (3.12). Since U = 0 does not satisfy det 8 == 0
from the discussions for the mechanical transverse and the thermo-mechanical longitudinal
waves, we have

v,q =0, T=O (3.33)

at this surface. While the coefficients matrix for e, band p differs from A in eqn (3.12), because
eqn (3.9) which is involved in eqn (3.10) is not valid for the stationary surface. Putting U = 0
in eqns (3.1) and (3.2) yields

b=O, ex n = 0, (3.34)

where the latter equation states that e is linearly polarized in the directions of ±n. Equation
(3.8) is reduced to, by means of eqn (3.34h,

foX cos 9 (e . n) - p . m = 0, (3.35)
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where m denotes the unit vector in the direction of Bo. Eliminating efrom eqns (3.2)2 and (3.35)
yields

p. (X cos On +m) = 0, (3.36)

which means that p is perpendicular to the vector m+ X cos 8n. Let", be the angle between this
vector and n measured in the same direction as e. It is easy to obtain

"':: arctan (tan 8/1 + X), (3.37)

see Fig. 6. In view of Fig. 7, we are found that p is nearly perpendicular to Bo for small X and
that it is nearly perpendicular to n for large X and except for e near Tr/2.

Fig. 6.

Fig. 6. Coupled fields of the stationary surface, where ji and edo not lie in the same side of the plane being
perpendicular to n.

Fig. 7. Variation of the angle tis between nand m+X cos 8n at the stationary surface.

4. VARIATION OF AMPLITUDES OF SINGULAR SURFACES

To obtain the differential equations which govern the variation of the amplitudes, we take
the jumps of the first time derivatives of eqns (2.1)-(2.6) and the second time derivative of the
inner product of eqn (2.3) by Bo. The obtained equations can be expressed in the following form
for the waves:

P,,/Ja/J == Q"/lii/l + UR"/la/J' (0:,13 =: 1,2, ..., 16) (4.1)
where

0 Ut 0 0 0 0
Eof.l.o UI 0 f.l.oUI 0 0 0

0 0 0 0 0 0
IIPallll;e (pU 2 + f.l.)l (4.2)

0 0 0 +(A + f.l.)n®n 0 0
0 0 0 0 rUt 0
0 0 0 0 0 -l3oToU

0 0 0 0 0 0
0 0 0 0 0 0

I'IIQa/Jll= -Box 0
1 (BoX )2 0 0-BoX (4.3)EoX

U 21 0
_U2

-U2Box 0 0-1
EoX

0 0 0 0 -I'U1 0
0 0 0 0 0 ..
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and Ra/3 is defined by eqn (3.12). In the above derivation we used the relation Ra/3t1/3 = 0
obtained by differentiating eqn (3.10) with respect to time. Let fY be the left null vectors of Rar<
corresponding to the wave, then the differential equations for the amplitudes are obtained by
taking the inner products of eqn (4.1) by P:

(a, f3 = 1,2, ... , 16). (4.4)

In what follows we shall determine the vectors P by the heuristic method.

Mechanical transverse wave
For this wave we take the vector product of the part a = 10, 11, 12 of eqn (4.1) by 0, instead

of the inner products by null vectors. That is, we have

2 U 2
_

(pU + I-t)v x 0 = - - (Do x v) x 0,
y

(4.5)

where we have used the relations e= b= p= O. Equation (4.5) is reduced to, by eqns (3.16)
and (3.17),

where
Do'D

WM. == 2p'Y .

(4.6)

(4.7)

Equation (4.6) is easily solved by use of the perpendicularity of v to 0 under the condition v= v"
at t = 0:

v= cos wMetVO+ sin tuMetvo X D. (4.8)

Thus the amplitude does not vary its magnitude but rotates with the angular velocity tuMe on the
plane being perpendicular to n. In view of eqn (4.7) we can state that the amplitude of this wave
is right or left circularly polarized, respectively, when the angle 8 between Do and 0 is less or
larger than 7T/2. When Do is perpendicular to 0, the rotation of the amplitude does not occur.
The absolute value of tuMe takes the maximum value when Do is parallel to D.

Thermo-mechanical longitudinal waves
Taking the inner product of the part a = 10, 11, ... , 16 of eqn (4.1) by the vector:

(4.9)

yields

The first term in the right of eqn (4.10) vanishes from eqn (3.21), and by eliminating q and f by
means of eqns (3.5) and (3.6) from it we finally obtain

where

v.n = -8TMe V. 0

2
_ yoCH

8TMe = 2 [(U 2 2)2 + 2]T - CH 'YOCH

(4.11)

(4.12)

is positive and U is given by eqn (3.19). The solution of eqn (4.11) under the condition v= VO at
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v= vo exp (-OTM,t).
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(4.13)

It is easy to show that q and f are also expressed in the same form as eqn (4.13) Thus the
amplitudes of the coupled fields of these waves decay exponentially in time. Since the two
damping constants precisely coincide with those of the thermo-elastic material considered in
[6], we are found that the variation of the amplitudes of these waves are not affected by the
electro-magnetic properties of the material as well as the velocities of them.

Electro-magneto-polarization wave
According to the discussion in the last section, we may assume that Bo is not parallel to 0

for this wave. Taking the inner product of the part a = 1,2, .. ,9 of eqn (4.1) by the vector:

{ [
C2 ]/-LoU2 [ c

2

]}IEMaP= oxBo,U BO- U2 (Bo'0)0, B02 BO- U2 (Bo'0)0

leads to the equation:

U(0 x Bo) . ii + Eo/-LoU2[ Bo- ~2 (Bo. 0)0]' e+ /-Lo U2[Bo- ~ (Bo . 0)0] . Ii

(4.14)

(4.15)

In the last section we showed that Bo, 0, p and e are always situated on a plane, so that the
vectors Bo x e and 80 x p should be the zero vector or perpendicular to the four vectors, see
again Fig. 2. Hence the right of eqn (4.15) vanishes. Eliminating band p from it by means of eqn
(3.1)1 and (3.9), we obtain

or equivalently

e' [Bo- (Bo' 0)0] = 0,

esin /;I sin <p = o.

(4.16)

(4.17)

Since /;I is not equal to 0 or 1T in this case and so is <p in view of Fig. 3, eqn (4.17) implies that
the magnitude of eremains constant in time. The direction of eis also constant from eqn (3.28),
and therefore e is a constant vector. The other coupled fields band p are also constant vectors
from eqns (3.1)1 and (3.9).

Electro-magnetic wave
We first consider the case where Bois not parallel to o. Taking the inner product of the part

a = 1,2, .. ,9 of eqn (4.1) by the vector:

yields

IEMa= [Bo-(8o' 0)0, U(8o x 0), /-L;S2 (Box 0)] (4.18)

~ .. .. /-LoU 2
U(Bo' b) - U(Bo' o)(b' 0)+ (BoX 0)' e = --B2 (Boxn)' (BoX e). (4.19)

'Y 0

Figure 5 implies that the vectors Box 0 and Bo x e make the right angle and hence the right of
eqn (4.19) vanishes. By eliminating b by means of eqn (3.1)1, eqn (4.19) is reduced to

(80 x 0) . e=O. (4.20)

Since eis parallel to Bo x 0 from (3.32), eqn (4.20) implies that eis a constant vector in time. The
amplitude b is also a constant vector in time from eqn (3.1)1.
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When Bo is parallel to n, replacing lEMa in the above process by the vector:

I , - ( U ILoU
2

)EMa = n x c, c, B
0

2 C , (4.21)

where c is an arbitrary vector not being parallel or perpendicular to n, leads to the same result.

Stationary surface of electric and polarization fields
For this surface eqn (4.1) is not valid and the desired differential equation for the amplitudes

is given by taking the jumps of the first co-ordinate derivatives of eqn (2.3):

B ~ 1 - -Y oXp=-p-e,
foX

where we have used eqn (3.33). By means of the expression:

_ 1 (_ )e =-- p' n n,
fo

which is obtained from eqns (3.2)2 and (3.34h, eqn (4.22) reduces to

px m = -.-.!.-B [p +X(p . n)o],
foXY 0

(4.22)

(4.23)

(4.24)

where m denotes the unit vector in the direction of Bo. To solve eqn (4.24) we introduce the two
unit vectors on the assumption that Bo is not parallel to 0:

where

1
k, ;: ---:----fi m x 0,

sm
k 1+ X fi 1+X cos

2
fi

2;: - -- cos m + 0
d d

(4.25)

(4.26)

The two ve.ctors are defined to be perpendicular to the vector m + X cos fin and to each other,
so that p being perpendicular to m + X cos fin can be expressed as

(4.27)

Substituting eqns (4.25) and (4.27) into eqn (4.24) and comparing the coefficients of m, 0 and
m x 0 in both members, we obtain

1+ X cos2 8 . 1
d P2 = foXyBo sin fi Pi, (4.28)

(4.29)

Under the condition PI =po, P2 =0 at t = 0, the solutions of the above equations are easily
obtained, and p is then expressed as

where

_ 1 ( 1+ X )1/2
WEP = EoX'yBo 1+ X cos2 8

= [1 + 2X cos
2

8 +x2
cos

2fi] 1/2r - 2
(l +x)(1 + X cos 8)

(4.30)

(4.31)

(4.32)
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and r is less than or equal to one. Thus p is elliptically polarized on the plane being
perpendicular to m +X cos 9n. The angular velocity of the rotation and the elliptic ratio are
given by eqns (4.31) and (4.32), respectively, see Fig. 6. Figure 8 shows that the angular velocity
takes the maximum value when 8 0 is perpendicular to n, and that it becomes larger as X
becomes smaller. Figure 9 shows that when X is large and 8 0 is perpendicular to n, r is small,
that is, p is almost linearly polarized in the directions of ±k., and that when X is small, r is
nearly equal to one, that is, p is almost circularly polarized.

When 8 0 is parallel to n, p is perpendicular to n in view of Fig. 7. Then the differential eqn
(4.24) takes the same form as eqn (4.6). Thus by refering to eqn (4.8), p is again expressed as
eqn (4.30), where we define k, as to be an arbitrary unit vector being perpendicular to nand k2

as to be k, x n in this case. Here r is equal to one, that is, p is precisely circularly polarized. The
angular velocity takes the minimum value in this case from Fig. 8.

The variation of e is given by substituting eqn (4.30) into eqn (4.23):

_ 'Po sin2 9 .
e = - d sm wEPtn.

Eo
(4.33)

1Of- .";x;;,,,o,,;:O:;,:.I==*=_===~~ __I

5

f---=--=---- ---- -- -t ----

0.5

10

0.1

100

7[/2

Fig .8.

e 7[

o 7[/2

Fig. 9.

e

50 --- --

' 0

10

7T/2

Fig. 10.

IT

Fig. 8. Variation of the angular velocity WEP at the stationary surface.

Fig. 9. Variation of the elliptic ratio r at the stationary surface.

Fig. 10. Variation of the ratio of the maximum magnitude of ji to that of eoe at the stationary surface.
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Thus e, being parallel to n, periodically reverses in direction with the same period as the
rotation of p. Figure to shows that the ratio of the maximum magnitude of p to that of e takes
the maximum and the minimum values, respectively, when 80 is parallel and perpendicular to n.
We note that this situation is reversed in the case of the electro-magneto-polarization wave.
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